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Abstract. Non-methane volatile organic compounds (NMVOCs) serve as key precursors to ozone and secondary organic
aerosols. Given that China is a major source of NMVOCs, the emission inventory is crucial for understanding and controlling
atmospheric pollution. Mainstream inventories are constructed using bottom-up approaches, which cannot accurately reflect
the spatiotemporal characteristics of NMVOCs, resulting in poor model outcomes. This study performed monthly optimization
of NMVOC emissions in China by assimilating formaldehyde retrievals from the latest satellite products. A semi-variogram
spatial analysis is conducted before assimilation, highlighting the advantages of using Tropospheric Monitoring Instrument
(TROPOMI) and Ozone Mapping and Profiler Suite (OMPS) formaldehyde products for estimating high-resolution NMVOCs
compared to Ozone Monitoring Instrument (OMI) retrievals. The emission optimization is performed based on a self-developed
4DEnVar-based system. A positive increment of NMVOC emissions was obtained by assimilating OMPS formaldehyde, with
annual anthropogenic emissions rising from 22.40 to 41.32 Tg, biogenic emissions increasing from 16.56 to 28.01 Tg, and
biomass burning emissions rising from 0.29 to 0.65 Tg. Our model simulations, driven by the posterior inventories, demon-
strate superior performance compared to the prior. This is validated through comparisons against the independent satellite
measurements and the surface ozone measurements. The RMSE of the posterior formaldehyde columns decreased from 0.49
to 0.45 x10'% molec/cm? nationwide. In the severe-polluted NCP, it was improved effectively, reaching levels comparable to
TROPOMI, with the RMSE dropping from 0.52 to 0.37 x 106 molec/cm?. Validation using surface ozone observations also
yielded favorable results, especially in NCP.

1 Introduction

Non-methane volatile organic compounds (NMVOCs) are significant components of the atmosphere, serving as key precursors
to ozone (O3) and secondary organic aerosols (SOA) (Liu et al., 2017). They engage in numerous photochemical reactions,
exerting a considerable influence on atmospheric oxidative capacity and air quality (Zhu et al., 2021). Moreover, NMVOCs

such as benzene, trichloroethylene, and chloroform are recognized for their toxicity (Billionnet et al., 2011; Lerner et al.,
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2012), and prolonged exposure to elevated concentrations can pose significant health risks (He et al., 2015). China has seen a
rapid anthropogenic NMVOC emissions increase over the last three decades (Li et al., 2019), became the major source region
globally. Investigating NMVOC dynamics and their emission distributions is critical for addressing air pollution challenges in
China (Yuan et al., 2013; Hao and Xie, 2018).

NMVOC:s are primarily released through anthropogenic activities, biogenic emissions and biomass burning processes. Huge
efforts have been devoted to constructing inventories recording these emissions in a bottom-up way, such as the global Commu-
nity Emission Data System (CEDS) (Hao and Xie, 2018), the regional Multi-resolution Emission Inventory for China (MEIC)
(Li et al., 2019) and the Model of Emissions of Gases and Aerosols from Nature v2.1 (MEGAN) (Guenther et al., 2012). These
NMVOC emission inventories coupled with chemical transport models like GEOS-Chem (Ito et al., 2007) and WRF-Chem
(Azmi et al., 2022), are capable of reproducing the complex processes including transport, deposition, and chemical reactions.
This not only helps to better quantify the environmental impact of NMVOC:s, but also provides essential tools for predicting
future trends and making emission reduction strategies. However, the NMVOC emission factors required in the bottom-up
method have large temporal and spatial variations, and this information is usually not widely available (Bo et al., 2008; Sharma
et al., 2015). Additionally, due to the implementation of ever-stricter control measures targeting major industries, residential
life, and transportation sectors in recent years (Wu et al., 2016; Li et al., 2017; Zheng et al., 2018), NMVOC emission patterns
in China have undergone significant changes. As a result, these bottom-up inventories inherently have considerable uncer-
tainties (Li et al., 2014; Qiu et al., 2014). For example, bottom-up estimates of China’s annual NMVOC emissions for 2012
range between 18 and 27 Tg as reported by different studies (Kurokawa et al., 2013; Wu et al., 2016; Stavrakou et al., 2017).
This significant uncertainty poses challenges for accurately modeling and assessing the environmental impacts of NMVOCs in
China (Han et al., 2013; Wang et al., 2014).

There are numerous well-established techniques for measuring the concentrations of various volatile organic compounds
in the atmosphere. These include gas chromatography, mass spectrometry, Fourier transform infrared spectroscopy, and non-
dispersive infrared analysis. While these methods are highly effective for meeting the requirements of experimental studies and
real-time monitoring, their complexity and the associated high labor costs pose significant challenges for long-term measure-
ments or assessments across large spatial scales. Among the various NMVOC:s, the optical properties of formaldehyde (HCHO)
and glyoxal (CHOCHO) make them particularly suitable for detection via remote sensing technologies. These properties enable
formaldehyde and glyoxal to be among the few NMVOCs that can be monitored from satellites. Remote sensing observations
of these compounds typically rely on spectral channels in the ultraviolet-visible (UV-Vis) range, with their primary absorption
features occurring between 330 and 460 nm (Platt, 1979; Lerot et al., 2010; De Smedt et al., 2012).

Compared to glyoxal, satellite products for formaldehyde is more well-established. Satellite observations of glyoxal began
later with initial identifications made using Aura Ozone Monitoring Instrument (OMI), and its retrieval is more challenging than
that of formaldehyde (Kurosu et al., 2005; Chan Miller et al., 2014). Recent years have seen further advancements in satellite
observational instruments and algorithms for formaldehyde (Abad, 2022; De Smedt et al., 2017), leading to new satellite
observation products with improvements in both accuracy and resolution. In contrast, while the glyoxal retrieval algorithm

has been updated for OMI product (Alvarado et al., 2014), its satellite products continue to face substantial uncertainties.
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Notably, the latest version of Sentinel-5 Precursor Tropospheric Monitoring Instrument (TROPOMI) glyoxal products is no
longer publicly available on the official website.

Formaldehyde measurements from instruments such as the Global Ozone Monitoring Experiment-2 (GOME-2) (De Smedt
et al., 2012), OMI (Gonzélez Abad et al., 2015), Ozone Mapping and Profiler Suite (OMPS) (Li et al., 2015) and TROPOMI
(De Smedt et al., 2018) have been used widely for estimating NMVOC emissions through data assimilation. The core of the
methodology is to calculate the most likely NMVOC emissions given the formaldehyde observations and the prior information.
For instance, Fu et al. (2007) used six years of continuous satellite measurements of formaldehyde columns from GOME
(1996-2001) to improve regional emission estimates of reactive NMVOCs, including isoprene, olefins, formaldehyde, and
xylene, for East Asia and South Asia. Similarly, formaldehyde data from the GOME-2A satellite were used to constrain
NMVOC emissions in India for 2009 (Chaliyakunnel et al., 2019). Souri et al. (2020) used observations from OMPS satellites
during the KORUS-AQ campaign to estimate NOx and NMVOC emissions in East Asia from May to June 2016. Kaiser et al.
(2018) also utilized high-resolution formaldehyde retrieval data from OMI instrument to quantify isoprene emissions at the
ecosystem scale in the southeastern United States during August—September 2013. Those promising results have demonstrated
that formaldehyde measurements could be utilized to optimize the existing NMVOC emissions that were established in a
bottom-up manner.

Studies focusing on top-down NMVOC emission optimization over China remain relatively limited in recent years. Shim
et al. (2005) assimilated formaldehyde observations from the GOME using a global Bayesian inversion to constrain isoprene
emissions. Although China was included within their East Asia region, the analysis lacked region-specific focus and did not
provide detailed characterization of emission patterns over China. Furthermore, the coarse spatial resolution (4° x 5°) in that
study limited the ability to resolve subregional emission features. Stavrakou et al. (2016) conducted a regional inversion in
Eastern China using multi-year satellite formaldehyde data from GOME and OMI to constrain VOC emissions during the
post-harvest burning period. Their indicated that the crop burning fluxes of VOCs in June exceed by a factor of 2 the combined
emissions from other anthropogenic activities in NCP region from 2005 to 2012. Cao et al. (2018) conducted a relatively
systematic satellite-based emission inversion study over China. They used a 4DVar method and assimilated OMI and GOME-
2A formaldehyde products to estimate monthly NMVOC emissions over China in 2007, with a coarse spatial resolution of 4°
x 5°. Considering the increasingly stringent air pollution control policies and significant interannual variability in NMVOC
emissions in recent years, e.g., the biomass buring emission is now reduced to a relatively low level, there is an urgent need for
high-resolution top-down emission optimization over China.

In terms of the assimilation observation sources, OMI product now remains as one of the most widely used formaldehyde
products in related studies. However, the retrievals over China are reported to suffer from the so-called "row anomaly" issue
(Gonzalez Abad et al., 2015), which may reduce the assimilation accuracy especially in the high-resolution configuration. To
address this issue, a semi-variogram spatial analysis is performed before assimilation, which highlights the added value of using
TROPOMI and OMPS formaldehyde products for estimating high-resolution NMVOCs compared to OMI retrievals. Subse-
quently, the monthly NMVOC emission optimization in China is conducted. This is achieved by assimilating formaldehyde

observations from OMPS and TROPOMI, based on the emission inversion system that couples the four-dimensional ensem-
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ble variational (4DEnVar) data assimilation algorithm and GEOS-Chem model. The effectiveness of this emission inversion
system has been evaluated in our recent study (Jin et al., 2023; Xia et al., 2025).

This paper is organized as follows: Section 2 describes the dataset and methodology, focusing on GEOS-Chem model, input
emission sources (anthropogenic, biogenic, and biomass burning), and the satellite and ground-based observations utilized.
Section 3 provides an analysis of the assimilation results, including the estimation of posterior NMVOC emissions and the val-
idation of both formaldehyde columns and ground-level O3 simulations. Section 4 summarizes the key findings and concludes

the study.

2 Data and methods

This chapter begins by introducing GEOS-Chem model utilized for simulations in Section 2.1. Section 2.2 presents an overview
of the input emission sources for the model, including anthropogenic sources, biogenic sources, and biomass burning inven-
tories. Section 2.3 introduces the three satellite observations employed in the analysis in this study. In Section 2.4, the ground
observations used for O3 validation are presented. Section 2.5 outlines a semi-variogram algorithm for a preliminary assess-

ment of satellite observations quality, while Section 2.6 introduces the 4D-Var algorithm used for data assimilation.
2.1 Model simulation

GEOS-Chem is a chemical transport model driven by meteorological data from Goddard Earth Observing System (GEOS)
of NASA’s Global Modeling and Assimilation Office (GMAO) (Bey et al., 2001). In this study, we use GEOS-Chem Classic
(GCC) v14.1.1 to simulate NMVOC emissions over China, as shown in Figure 1. The global simulation has a horizontal
resolution of 2° latitude x 2.5° longitude, with boundary conditions updated every 3 hours. The nested region (72°-136° E,
17.5°-54° N) has a horizontal resolution of 0.5° latitude x 0.625° longitude and 47 vertical layers. Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2) meteorological fields (Gelaro et al., 2017) are used to drive
GEOS-Chem. Each simulation includes a 6-month spin-up period.

This model version incorporates detailed O3-HO,-NO,, photochemistry and fully coupled aerosol-O3-NO,-VOCs chemistry
representation (Park et al., 2004), coupled with a scheme for primary carbonaceous aerosols, dust, sea salt, and secondary
inorganic species (sulfates, nitrates, and ammonium) and their distribution. To better simulate oxidant-aerosol reactions in the
stratosphere and troposphere, GEOS-Chem v14.1.0 introduced a new KPP 3.0 chemical solver (Lin et al., 2023), including
chemical mechanisms for isoprene, aromatics, ethylene, and acetylene (Bates and Jacob, 2019; Bates et al., 2021; Kwon et al.,

2021).
2.2 Prior NMVOC emission inventries

The prior information and its uncertainty is the essential part in the NMVOC emission inversion as will be explained in Section
2.6. The anthropogenic NMVOC emission input into the model mainly comes from the Multi-resolution Emission Inventory

for China (MEIC; Zheng et al., 2018). Since the MEIC inventory tailored for the existing chemical species in GEOS-Chem only
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Figure 1. Spatial distributions of the total formaldehyde columns from GEOS-Chem model-simulated prior (a) and posterior (b) results, and

from satellite observations by OMPS (c) and TROPOMI (d) in January (a.1)-(d.1), April(a.2)-(d.2), July (a.3)-(d.3), October 2020 (a.4)-(d.4).
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extends to 2017, the MEIC inventory used in this study is the 2017 emission inventory. This inventory has a spatial resolution
of 0.25° latitude x 0.25° longitude and includes industrial, transportation, power generation, and residential emissions. For
chemical species used in GEOS-Chem but not included in MEIC and anthropogenic NMVOC emissions outside China, we
use the CEDS global inventory as a supplement. The variations in NMVOC emissions mainly originate from biogenic sources.
The prior estimates of biogenic NMVOC emissions in this study are obtained from the MEGAN 2.1 model (Guenther et al.,
2012). Field straw burning is considered a major seasonal source of NMVOCs in China (Huang et al., 2012; Liu et al., 2015;
Stavrakou et al., 2016), and the biomass burning emissions in this study come from the GFED4 global inventory (Van Der Werf
et al., 2017). Before these prior emissions are used to drive GEOS-Chem simulations, the spatial resolution is coarsened to an
average value on a 0.5° x 0.625° grid resolution consistent with the model configuration as used in Section 2.1.

Figure 2 (a) presents the prior NMVOC emission inventories for 2020, which primarily relies on the anthropogenic emission
inventory from MEIC, supplemented by the CEDS inventory for species not included in MEIC. Additionally, the biogenic
emission inventory from MEGAN (offline calculation) and the biomass burning inventory from GFED4 are incorporated.
The optimization of NMVOC emissions through the assimilation of formaldehyde observations will be conducted using these

combined prior inventories.
2.3 Formaldehyde Satellite measurements
2.3.1 NOAA-20 OMPS

Ozone Mapping and Profiler Suite (OMPS) was launched on Suomi National Polar-orbiting Partnership (SNPP) satellite on
October 28, 2011, and on the JPSS-1 satellite (now known as NOAA-20) on November 18, 2017. OMPS/SNPP consists of
three instruments: the nadir mapper (OMPS-NM), the profile mapper (OMPS-NP), and the limb profiler (OMPS-LP), while
OMPS/NOAA-20 includes only the nadir package (OMPS-NM and OMPS-NP). This study uses OMPS-N20 Level 2 NM
formaldehyde Total Column swath orbital Version 1 product (Abad, 2022). OMPS-NM is a hyperspectral nadir viewing spec-
trometer that measures backscattered light with a spectral resolution of approximately 1 nm. The NOAA-20 spectral mea-
surement range is 300—420 nm. The instrument employs a 2-D CCD array detector in a pushbroom geometry, observing the
two-dimensional field below the satellite’s orbit over a swath width of about 2800 km. With 14 or 15 orbits per day, OMPS-
NM provides daily global coverage of trace gas columns in the early afternoon local time, with an equatorial crossing time of
approximately 13:30. The spatial resolution of OMPS/NOAA-20 was 17 km x 17 km until February 13, 2019, when it was
changed to 12 km x 17 km (Flynn et al., 2014; Pan et al., 2017; Seftor et al., 2014).

In this study, the quality control scheme recommended in OMPS product documentation was applied when using OMPS
data. Data points with formaldehyde column densities exceeding 2e17 molecules/cm? were excluded to minimize the impact

of outliers. Furthermore, the geometric air mass factors were defined as follows:
AMFg = sec(SZA) + sec(VZA) (1)

Here, SZ A represents the solar zenith angle and V' Z A denotes the viewing zenith angle. After removing outliers, we further

filtered out data points where the product of formaldehyde columns and three times the observation uncertainty was less than
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Figure 2. Spatial distributions of the total NMVOC emissions from the prior (a) and posterior (b) results in January (a.1, b.1), April (a.2,
b.2), July (a.3, b.3), October (a.4, b.4).

zero. Subsequently, data points were excluded if SZ A exceeded 70°, the air mass factor was less than 0.1, the geometric air
mass factor exceeded 5, or the cloud fraction surpassed 0.4. Snapshots of filtered OMPS formaldehyde columns is shown in

Figure 1(c).
2.3.2 Sentinel-5P TROPOMI

Sentinel-5 Precursor (Sentinel-5P) is a member of the European Space Agency’s (ESA) Sentinel satellite series. It is in a
low-Earth afternoon polar orbit with a swath of 2600 km, allowing for daily global coverage (Veefkind et al., 2012). Its sole
payload is Tropospheric Monitoring Instrument (TROPOMI), a nadir-viewing, 108-degree field-of-view push-broom grating
hyperspectral spectrometer. TROPOMI covers the ultraviolet-visible (UV-VIS, 270 nm to 495 nm), near-infrared (NIR, 675
nm to 775 nm), and shortwave infrared (SWIR, 2305 nm to 2385 nm) spectral ranges. Its Level 2 products include vertical

columns of Og, sulfur dioxide, nitrogen dioxide, formaldehyde, carbon monoxide, and methane, as well as O3 profiles, aerosol
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layer height, cloud information, and aerosol index. The initial spatial resolution was 3.5 km x 7 km, which was improved to
3.5 km x 5.5 km on August 6, 2019.

The retrieval algorithm for TROPOMI formaldehyde is based on the DOAS method and is directly inherited from OMI
QA4ECYV product retrieval algorithm (De Smedt et al., 2017). This study uses Sentinel-5SP TROPOMI Level 2 Tropospheric
formaldehyde Version 2 product (Copernicus Sentinel data processed by ESA, German Aerospace Center (DLR), 2020).
Vigouroux et al. (2020) evaluated this TROPOMI formaldehyde product in 2020 using ground-based solar-absorption FTIR
(Fourier-transform infrared) measurements, demonstrating the good quality. In 2021, De Smedt et al. further assessed TROPOMI
formaldehyde using OMI observations and MAX-DOAS network column measurements, also showing favorable results. When
using Level 2 TROPOMI formaldehyde data for the validation in this paper, we excluded only negative values and excessively

large outliers to ensure data coverage. Examples of filtered TROPOMI formaldehyde columns are shown in Figure 1(d).
2.3.3 Aura OMI

Ozone Monitoring Instrument (OMI) is an important satellite instrument mounted on Aura satellite, launched on July 15, 2004.
Its purpose is to monitor and study the composition of atmospheric gases, aerosols, and clouds to enhance our understanding of
atmospheric chemistry and climate change. OMI provides daily global coverage with high spatial resolution (approximately 13
% 24 km), and its wide swath (2600 km) allows it to achieve global coverage in one day. It overpasses at 13:45 LT each day. OMI
sensor contains three spectral channels: UV-1, UV-2, and VIS, covering the wavelength ranges of 264-311 nm, 307-383 nm,
and 349-504 nm, respectively. These channels enable the observation of various trace gases, including Os, nitrogen dioxide
(NOy), sulfur dioxide (SO,), and formaldehyde (Zhang et al., 2019).

OMI/Aura formaldehyde Total Column Daily L2 Global Version 3 product (Chance, 2014) is also used for the observation
sources in this paper. The retrieval algorithm for this product is based on a nonlinear least-squares fitting technique, which
calculates the slant column density (SCD). The SCD is then converted to vertical column density (VCD) using air mass factors
(AM F). Since atmospheric formaldehyde is primarily concentrated in the troposphere, the total VCD can be regarded as the
tropospheric VCD of formaldehyde (Duncan et al., 2010). In practical applications, data with a cloud fraction greater than or

equal to 0.3 are further excluded.
2.4 Og ground station observation

This study aims to constrain the NMVOC emissions in China by assimilating multiple formaldehyde satellite products. As
aforementioned, formaldehyde is an important precursor to O3, the optimization of the NMVOC emission inventories and
concentrations are supposed to improve the O3 simulation simultaneously. To evaluate the magnitude and quality of this impact,
the ground level O3 concentrations from the National Urban Air Quality Real-time Publishing Platform of the China National
Environmental Monitoring Center (CNEMC, last access: May 15, 2024) are used in the validation. The O3 measurements
utilized in this study are from 1,602 sites across China. The MDAS values of surface O3 observations are calculated based on
the hourly data before they are compared against the model simulation. Results of the comparison will be described in Section

3.4.
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2.5 Semi-variogram algorithm

The semi-variogram function describes how the similarity between variables varies with changes in spatial distance and is
widely applied in geospatial interpolation and spatial autocorrelation analysis. Samples of both remotely sensed data (satellite
or airborne multispectral scanning systems, digitized aerial photography, etc.) and ground data (biomass, soil moisture, etc.)
can be used to construct semi-variograms in remote sensing research (Curran, 1988). When a variable is distributed in space, it
is called a regionalized variable, and the semi-variance function is the mathematical expectation of the square of the increment
between regionalized variable values Z (x;) and Z (x; + h), representing the variance of increments of regionalized variables

(variograms). «y (h) is the semi-variogram, representing the semi-variance value at distance h. Its calculation formula is:
N(h
1 (h)

1) = g3y Do (2 @) = Z (i) @

(]

i=1

Where N (h) is the number of sample pairs at distance h, Z (z;) is the variable value at location z;, Z (z; + h) is the
variable value at location z; + h. A larger semi-variance value indicates greater variability between variable values at two
points, suggesting lower spatial correlation. A smaller semi-variance value indicates greater similarity between variable values
at two points, suggesting higher spatial correlation.

In previous studies, Souri et al. combined the semi-variogram function to investigate the spatial variability of OMI satellite
observations. They subsequently used this method to compare OMI data with TROPOMI data, demonstrating the superiority
of TROPOMI data (Johnson et al., 2022). In this study, we calculated the semi-variance values of formaldehyde simulations
from GEOS-Chem, and formaldehyde observations from TROPOMI, OMPS, and OMI at different spatial resolutions (ranging
from 0.5° x 0.5°, 1° x 1°, 2° x 2°, and 4° x 4°). With these, analysis would be carried out in Section 3.1 to evaluate whether

these several simulations and observations accurately reflect the spatial variability of the atmospheric formaldehyde.
2.6 Assimilation algorithm

This study employs the four-dimensional ensemble variational (4DEnVar) methodology to assimilate formaldehyde observa-
tions to constrain NMVOC emissions. The goal of this assimilation is to find the most likely estimate of the state vector, which
is the monthly NMVOC emission inventories f over the entire model domain. The prior estimate f, is from the inventories
described in Section 2.2, and the formaldehyde concentration observations y are described in Section 2.3. Mathematically,

assimilation is performed via minimizing the cost function J as follows:

T(F) =5 (F = F)TBTHE ~ £+ 5 {y = HM(HF O fy—HM($) @

The cost function J is sum of two part: background and observation penal term. The background term quantifies the differ-
ence between the optimal f and the prior emission inventories f,, while the observation term calculates the difference between

the simulation driven by f and the satellite observations y. In addition to the f, that represents the prior NMVOC emission
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vector calculated from the anthropogenic, biogenic, and biomass burning sources as been illustrated in Section 2.2. The uncer-
tainty in the NMVOCs simulation is assumed to be attributed to errors in the emission inventories, and can be compensated

using a spatially varying tuning factor a:

f@) = fo(i) - a(i) 4)

in here fj, () denotes the NMVOC emission rate in the given grid cell i. The « values are defined to be random variables
with a mean of 1.0 and a standard deviation o, = 0.2. This empirical value was found to provide sufficient spaces for resolving
the observation-minus-simulation errors. A background covariance B, is formulated as a product of the constant standard

deviation and a spatial correlation matrix C:

Ba (Z7J)ZUGC(Z7J) (5)
where C (i, j) represents a distance-based spatial correlation between two « in the grid cell 7 and j, and is defined as:
C (i,j) = e~ (@s/V*/2 (©)

where d; ; represents the distance between two grid cells 7 and j. [ here denotes the correlation length scale which controls
the spatially variability freedom of the «. A small I means more errors in fine scale could be resolved using the assimilation,
while however requires more ensemble runs to represent the model realization from emission to simulation. An empirical
parameterl = 300 km which is used in Jin et al. (2023) to nudge the ammonia emission that has a rapid spatially variability
is also taken in this study. With the covariance matrix B, the NMVOC emission background covariance B is obtained via a

Schur Product:

B=B,oC )

In the observation term, ¥ is the observation vector, representing satellite observations, M is GEOS-Chem model driven by
emissions f, H is the observation operator that transfer the three dimensional concentration into the observational space, and
O is the observation covariance matrix. The satellite formaldehyde observations are assumed to be independent, therefore O

is a diagonal matrix. The diagonal value here is calculated as:

_ 2 2
Ototal = \/Uinslrument + Orepresent ®)

In the Equation 8, oy, is defined as the total uncertainty, which is the square root of the sum of the squares of the instru-

ment uncertainty ipgument {rom the formaldehyde observations and the representative uncertainty oyepresent introduced when

10
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processing the data into monthly averages. The representative uncertainty oyepresent i represented by the standard deviation of
the data.

With the assimilation-based emission inversion system above, we conducted three sets of experiments to explore the benefits
to emission optimization. These experiments involved assimilating OMPS data and validating the assimilation results using
TROPOMI, assimilating TROPOMI data, and finally assimilating the combined OMPS and TROPOMI data by averaging
them. In the subsequent results, we primarily analyze the results of the first set of experiments, while the detailed inventories

of the latter two experiments are archived in the supplementary material.

3 Results and discussion

Section 3.1 performs the semi-variogram analysis either based on GEOS-Chem simulation, or based on the formaldehyde
measurements data from OMPS, TROPOMI and OMI products at different horizontal resolutions. Section 3.2 discusses the
posterior NMVOC emissions through assimilating OMPS formaldehyde observations. In Section 3.3, the posterior formalde-
hyde column driven by the posterior NMVOC emission inventories, are validated. Finally, Section 3.4 presents an independent

validation of the posterior ground-level O3 simulations using ground-based O3 observations.
3.1 Semi-variogram analysis

The original formaldehyde column data products from multiple sources are available at varying horizontal resolutions: OMI
data at 0.25° x 0.25°, TROPOMI data at 5.5 km x 3.5 km, OMPS data at 17 km x 12 km, and GEOS-Chem prior simulation
at 0.5° x 0.625°. To ensure a fair comparison during the semi-variogram analysis, linear interpolation is applied to these four
formaldehyde datasets to generate averages at resolutions of 0.5° x 0.5°, 1° x 1°, 2° x 2°, and 4° x 4°, as shown in Figure 3.

As shown in the four interpolated results in Figure 3, the spatial distribution of high formaldehyde values is consistently
captured across different horizontal resolutions, either by the satellite observations in Figure 3(a, b, c) or by GEOS-Chem
simulation in panel (d). These hot spots are particularly prominent in the North China Plain (NCP) and Jiangsu-Zhejiang-
Shanghai regions. However, at the higher resolution of 0.5° x 0.5°, OMI formaldehyde data exhibits noticeable noise all
over China and lacks the spatial continuity observed in TROPOMI, OMPS, and GEOS-Chem datasets. The significant spatial
variability in the NMVOC emission field might account for the discontinuity observed in OMI formaldehyde data. However,
this discontinuity contradicts the model simulation and the other two satellite products obtained from the more advanced
instruments. Moreover, such discontinuities are not observed in OMI formaldehyde retrievals over the United States, where
(Kaiser et al., 2018) demonstrated continuous and high-quality data. Therefore, the discrepancies observed in China may be
attributed to uncertain input parameters, such as aerosols and surface albedo. OMI formaldehyde retrievals with larger spatial
grid intervals (2° x 2° and 4° x 4°) exhibit increased continuity and smoothness, as shown in Figure 3(a). This improvement is
attributed to spatial averaging, which effectively filters out white noise (Lee, 1980).

The differences in spatial variability among OMI, OMPS, TROPOMI, and GEOS-Chem simulations are clearly illustrated in

the semi-variogram plot shown in Figure 4. In this plot, smaller semi-variance values indicate stronger spatial autocorrelation
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and smaller random noise. We define the area below the yellow line in Figure 4 as the "stable zone" of the semi-variance
plot, which represents regions where the data effectively capture the true spatial dynamics of atmospheric formaldehyde. The
semi-variance plots demonstrate that the semi-variance function curves of GEOS-Chem, TROPOMI, and OMPS formaldehyde
column data consistently fall within the stable zone across all spatial grids. In contrast, the semi-variance function curve of OMI
formaldehyde data only enters the stable zone at coarser spatial resolutions of 2° x 2° or even 4° x 4°. This observation suggests
that at these coarser spatial resolutions, OMI formaldehyde data for China achieves sufficient continuity and reliability. This
finding is consistent with study in Cao et al. (2018), which constrained NMVOC emissions in China at a coarse resolution of
4° x 5°,

Overall, at higher spatial resolutions, OMI formaldehyde data exhibit more white noise, with higher semi-variance values
and weaker spatial autocorrelation. In contrast, the semi-variance values of OMPS and TROPOMI align more closely with the

trends observed in GEOS-Chem, making them more suitable for high-resolution (<1°) emission optimization.
3.2 NMVOC emissions

NOAA-20 OMPS formaldehyde observations were assimilated, resulting in updated monthly NMVOC emission inventories
in 2020. To better illustrate the seasonal pattern, the prior and posterior total NMVOC emission inventories for four months
(January, April, July, and October) are presented in Figure 2. These months were selected as typical examples representing four
different seasons. To better illustrate the increments that the assimilation made in different source, the prior and the posterior
NMVOC emissions from anthropogenic activities, biogenic plus biomass burning are separately plotted in Figure 6.

The prior annual NMVOC emissions and the increments obtained in the assimilation are plotted in Figure 5. In general,
our top-down posterior emission estimates show that anthropogenic emissions increased from 22.40 Tg to 41.32 Tg, biogenic
emissions rose from 16.56 Tg to 28.01 Tg, and biomass burning emissions increased from 0.29 Tg to 0.65 Tg. The increments in
emissions from the prior to the posterior estimates are primarily observed around the hot spots identified in the prior estimates,
with significant concentration increases in the North China Plain and the Yangtze River Delta (YRD), as well as notable
increases in smaller areas in Chongqing, Hubei, Hunan, Guangdong, and the northeastern provinces.

As shown in Figure 6 (c.2, d.4), the distribution patterns of biogenic NMVOCs in spring and autumn are quite similar,
predominantly concentrated in southern China due to the dense vegetation cover in that region. Isoprene and terpenes are the
primary biogenic NMVOC emissions, resulting in higher emissions in April and October. Conversely, in January during winter,
the dieback of vegetation and snow cover leads to a sharp decrease in leaf area index (LAI), significantly reducing biogenic
emissions (Wu et al., 2020). The inter-monthly timing profile of the anthropogenic NMVOC emissions shows little variation
as can be seen in Figure 6 (a). In spring, autumn and winter, anthropogenic emissions are generally higher than biogenic
emissions while in summer biogenic sources are dominant. In January, April, and October, the posterior estimates indicate that
changes in total NMVOC emissions, constrained primarily by anthropogenic sources, are most prominent. Notably, in April
and October, the southeastern coastal areas and Yunnan Province exhibit significantly elevated emission levels due to higher

vegetation cover, with emissions in these regions approximately 10 to 20 x 10~%kg/m? higher in January.
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Figure 3. Spatial distributions of total formaldehyde columns from four different sources (OMI, TROPOMI, OMPS, GEOS-Chem) across
China, displayed at four different grid resolutions (0.5°x0.5°, 1°x1°, 2°x2°, 4°x4°).
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Figure 4. Semi-variogram analysis curves for the four data sources (OMI, TROPOMI, OMPS, GEOS-Chem) in 2020. We refer to the region
in the semi-variogram with relatively small changes in semi-variance values as the stable zone (as indicated by the area below the yellow line

in the figure).
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Figure 5. Spatial distributions of the total annual prior NMVOC emissions (a) and the increments obtained in the assimilation (b). Panel (c)

compares the prior and posterior annual NMVOC emissions, including total emissions, anthropogenic, biogenic, and biomass burning.

In contrast to the other three seasons, summer features high temperatures, intense radiation, and vigorous vegetation growth,
which greatly increases biogenic emissions of isoprene and terpenes. Therefore, as shown in Figure 6 (c.3, d.3), biogenic
NMVOC emissions in China peak in July (Wu et al., 2020), with a significant expansion in the area covered by high values
compared to other months. The total NMVOC emissions in eastern China in July increase from approximately 5 x10~% - 20

x10~*kg/m? in the prior estimates to about 20 x10~* - 80 x10~*kg/m? in the posterior estimates.
3.3 Formaldehyde total columns evaluation

As shown in Figure 1 (a) and (b), GEOS-Chem simulated the prior and posterior estimates of formaldehyde for four months
of the year 2020 over China. In Figure 1 (a), the prior results exhibit a spatial distribution similar to satellite observations.
When compared to OMPS and TROPOMI satellite observations, the prior results accurately reproduce high-value features in
most regions, including Yunnan-Guizhou, Guangxi-Guangdong, NCP, the southeastern coast, and the northeast. However, the
previous simulation did not accurately represent the actual formaldehyde levels. Specifically, it underestimated formaldehyde
concentrations to varying degrees across different regions. By assimilating OMPS formaldehyde columns, improvement was
obtained steadily in the posterior simulations. Nationwide, the posterior formaldehyde columns were raised by approximately
50%. Comparing to TROPOMI data used as independent measurements, the formaldehyde levels in the NCP region were
raised from less than 1.2 x 106 molec/cm? to around 2.4 x 106 molec/cm? in January, closer to the observed values either
from OMPS and TROPOMI. The high-value features in Yunnan-Guizhou became more prominent in April, and significant
improvements were also observed in the southeastern coast, NCP, and the northeast in July and October. However, changes
in Inner Mongolia, Tibet, and the northwest were minimal. This is because the assigned background uncertainty, which is
proportional to the prior emission intensity in these regions, was particularly low, leaving limited flexibility for adjustments in

the assimilation. This can be best seen in Figure 2, these areas are depicted in gray on the map, with annual total emissions
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Figure 6. The upper figures show the spatial distributions of the anthropogenic NMVOC emissions form the prior (a) and posterior (b) results
in January (a.1, b.1), April (a.2, b.2), July (a.3, b.3), October (a.4, b.4). The lower figures show the spatial distributions of the biogenic and

biomass burning NMVOC emissions from the prior (c) and posterior (d) results in January (c.1, d.1), April (c.2, d.2), July (c.3, d.3), October
(c4,d.4).
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below 5 x10~*kg/m?, and the actual values for some grid points in these regions are even less than 1 x10~*kg/m?. Though
assimilating OMPS observations, the posterior simulation in these regions still remains low, resulting in little change. As
illustrated in Figure 7 (a.2, a.3), the minimal changes in these areas also affected the national observation-minus-simulation
discrepancies (root mean square error , RMSE), which decreased from 0.49 %1016 molec/cm? to 0.46 x10' molec/cm?.
However, as shown in Figure 7 (b.2)-(b.3), when focused on the NCP region, the RMSE decreased from 0.53 x 106 molec/cm?
to 0.37 x 106 molec/cm?effectively.

As indicated in the time series plot in Figure 7 (a.1), due to the minimal changes in formaldehyde columns in Inner Mongolia,
Tibet, and the northwest, the nationwide monthly average formaldehyde concentrations in the posterior results are still not high
enough compared to TROPOMI data. However, when we plot the time series for the NCP region alone, the results are better.
The posterior results show a significant improvement compared to the prior, with concentrations generally matching TROPOMI
data. Especially from March to June, the posterior and TROPOMI satellite observations curves for formaldehyde columns align

closely.
3.4 Impact of Formaldehyde Assimilation on O3 Surface Concentration

Formaldehyde is a key precursor for O3 and secondary organic aerosols, and its variations in the atmosphere are primarily
driven by NMVOC emissions. Optimizing NMVOC emissions is expected to improve O3 concentration simulations. To validate
this, we compare the O3 simulation from different NMVOC emission inventories with the O3 surface measurements in the
following study.

The spatial distribution prior and posterior MDAS surface O3 concentration simulation, as well as the corresponding ob-
servations, are plotted in Figure 8. When comparing the prior MDAS8 O3 surface concentration results with data from 1602
stations nationwide, the prior results generally capture the main hot spots of MDAS8 O3 surface concentrations, especially in
July, where they closely match the ground observations. However, in the other three months shown here, the performance is
not as accurate as in July.

Figure 9 illustrates the evaluation of O3 simulation in terms of different metrics, including probability density (a), scatter
plots (b), and correlation coefficients (c).As shown in Figure 9 (a), the frequency distribution histogram clearly demonstrates
that the prior ground-level O3 simulations systematically underestimate the observed values, whereas the posterior results
effectively reduce this bias. This indicates that both the overall and regional simulations of surface O3 concentrations have
been significantly improved, especially in the NCP region. As can be seen in Figure 9 (b), the RMSE (root mean square error)
between the observed and simulated values decreases from 24.44 pg/m?® to 22.79 pg/m? for China and from 28.0 pg/m? to
20.22 pg/m? for the NCP region. As shown in Figure 9 (c), the correlation coefficients calculated based on the monthly average
time series in the NCP region show a slight improvement, while the increase is more noticeable in the southern and northeastern

regions.
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Figure 7. Monthly variations of total formaldehyde columns over China (a.1) and North China Plain (b.1) for prior, posterior, OMPS and
TROPOMI in 2020. Scatter plots of TROPOMI satellite observations vs. the simulated total formaldehyde columns over China and North
China Plain either using the prior (a.2, b.2) or using the posterior (a.3, b.3) in 2020.
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and from ground O3 monitoring sites (¢) in January (a.1)-(c.1), April (a.2)-(c.2), July (a.3)-(c.3), October 2020 (a.4)-(c.4).
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Figure 9. Frequency histogram of the difference between the ground monitoring observed and simulated O3 surface concentrations over
China and North China Plain in 2020 (a.1, a.2) and scatter plot of the observed vs. simulated O3 surface concentrations using either prior
data (b.1, b.3) or posterior data (b.2, b.4). The correlation coefficients calculated based on prior monthly averaged time series in 2020 (c.1),

and the difference between posterior and prior correlation coefficients (c.2).
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4 Summary and conclusion

In recent decades, NMVOC emissions in China have been increasing steadily, leading to a series of environmental and health
issues. Currently, the NMVOC emission inventories established are generally based on bottom-up methods and exhibit con-
siderable uncertainty. Utilizing top-down methods to optimize pollutant emissions has become an effective approach. Due to
the limited types of NMVOCs species that can be observed by satellite instruments, only formaldehyde and glyoxal can be
detected over long timescales within the observable spectral bands. Previous studies have confirmed the feasibility of using
satellite formaldehyde retrievals to constrain NMVOC emissions. In this study, we carried out the monthly NMVOC emission
optimization through assimilating formaldehyde retrievals from the latest satellite products in 2020 in China.

Before using satellite observations to optimize NMVOC inventories, we used the semi-variogram to perform a quality
evaluation of different formaldehyde remote sensing products. The semi-variance values of NOAA-20 OMPS, Sentinel-5P
TROPOMI, and Aura OMI satellite observations at grid resolutions of 0.5°x0.5°, 1°x1°, 2°x2°, and 4°x4° are calculated and
analyzed respectively. The results indicate that, compared to the other three data, OMI satellite observations exhibit weaker
spatial autocorrelation and higher levels of white noise at higher resolutions. In contrast, the semi-variance values for the newest
OMPS and TROPOMI align more closely with the trends observed in GEOS-Chem simulation, making them more suitable for
high-resolution emission optimization.

The monthly NMVOC emission inventories in China were then estimated by assimilating OMPS formaldehyde column
observations. In general, the posterior results show that anthropogenic emissions increased from 22.40 Tg to 41.32 Tg, biogenic
emissions rose from 16.56 Tg to 28.01 Tg, and biomass burning emissions increased from 1.72 Tg to 2.11 Tg. The posterior
NMVOC emission inventories were then used to drive GEOS-Chem model, and the simulated posterior formaldehyde columns
were compared against independent TROPOMI observations. Nationwide, the posterior formaldehyde columns increased by
approximately 50%. There remains an underestimation compared to satellite observations, with the RMSE decreasing from
0.49 to 0.45 x10'6 molec/cm?. In the NCP region, the formaldehyde columns were effectively modified, reaching levels
comparable to those observed by TROPOMI, with the RMSE dropping from 0.52 to 0.37 x10'® molec/cm?. Independent
validation against the ground-level O3 observations yielded favorable results, with the RMSE between observed and simulated
values decreasing from 24.44 pg/m? to 22.79 pg/m?® across China, and from 28.0 pg/m® to 20.22 ug/m? in the North China
Plain region. This indicates that the estimated NMVOC inventories using a top-down approach can effectively optimize O3
simulations.

Optimizing NMVOC emission inventories with formaldehyde observations resulted in significant improvements in the
NMVOC simulations, while independent validation with ground-level O3 observations yielded favorable results. This indi-
cates that the NMVOC inventories constructed through this top-down approach are effective. The study still has much space
for improvement. For instance, the study only utilized formaldehyde measurements, and incorporating glyoxal data could

enhance the inversion results.
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Code and data availability

The 4DEnVar emission inversion system is in the Python environment and is archived on Zenodo.(https://doi.org/10.5281/
zenodo.14633919; Canjie Xu, 2025). OMPS-N20 Level 2 NM formaldehyde Total Column swath orbital Version 1 prod-
uct (https://doi.org/10.5067/CIYXTO9A412F4, Abad, 2022). Sentinel-5P TROPOMI Level 2 Tropospheric formaldehyde Ver-

5 sion 2 product (https://doi.org/10.5270/S5P-vg1i7t0, Copernicus Sentinel data processed by ESA, German Aerospace Center
(DLR), 2020). OMI/Aura formaldehyde Total Column Daily L2 Global Version 3 product (https://doi.org/10.5067/Aura/OMI/
DATA2016,Chance, 2014). National Urban Air Quality Real-time Publishing Platform of the China National Environmental
Monitoring Center (CNEMC, https://air.cnemc.cn: 18007/, last access: May 15, 2024).
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